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Abstract

Understanding hand poses has been popular in
the field of computer vision thanks to its po-
tential to be used in the real-world applications
such as augmented reality (AR), virtual reality
(VR), human computer interaction (HCI) and
etc. In this paper, we propose the fraemwork for
the finger bendedness classification which clas-
sifies 5 finger’s bendedness into ‘bending’, ‘half-
bending’ or ‘unbending’. Since directly estimat-
ing such bendedness of each finger from RGB
images is non-trivial, we constituted our frame-
work having 3 distinct stages: we first achieve
the 3D skeletal regression that estimates 3D co-
ordinate values of 21 keypoints lying on the hu-
man’s hands. Then, we calculate the angles be-
tween finger joints using the inverse kinemat-
ics from the regressed 3D keypoint coordinates.
Finally, we map the angles for each finger to-
wards 3 types of finger bendedness label (‘bend-
ing’, ‘half-bending’ or ‘unbending’). During the
mapping, we propose to use 2 types of finger
bendedness classification models for thumb fin-
ger and others, as the angle distribution for the
thumb finger is different from those for other
fingers; while angle distributions for other fin-
gers are similar each other. Experiments demon-
strated the effectiveness of our method showing
the superior performance compared to the finger
bendedness classification baseline based on the
ResNet-50 architecture.

Keywords— Hand pose classification, Hand pose es-
timation, Inverse kinetic, Regression

I. INTRODUCTION

Mobile devices such as smart phones, laptops, are mak-
ing our lives convenient everyday and becoming indispens-
able in our daily lives. On top of that, the real-world ap-
plications such as virtual reality (VR), augmented reality
(AR), convenient human-computer interaction (HCI) and

human-machines interface (HMI) applying AI technolo-
gies are increasingly introduced and commercialized re-
cently. For these applications, understanding hand poses is
crucial, as hand poses are the primary interacting user in-
terface for humans to interact with the outer environments.

Hand pose estimation is usually framed as the problem
to regress 3D coordinates of the keypoints lying on the hu-
man’s hands or to classify the discrete hand gesture labels.
Continuous coordinate values for 21 hand joints contain
rich information, however post-processing is further re-
quired to disentangle them towards the human intention;
while the discrete gesture label is already disentangled,
however it is non-trivial to extend it to encode the diverse
human intention. We try to find the compact representation
that better represents the diverse human intention. In this
paper, we propose to encode it as the bendedness of each
finger as the representation is simple and general enough
to encode diverse human intentions and gestures.

Directly estimating the finger bendedness from single
RGB images is non-trivial and we constituted our frame-
work having 3 distinct stages: We first estimate the 3D co-
ordinates of the 21 hand keypoints using the Mediapipe [5]
algorithm. By applying the inverse kinematics (IK) to the
estimated 3D coordinate values, we reveal the 9 angles (3
angles between 4 joints in x, y and z direction) from 4
joints constituting each finger. Finally, the finger bended-
ness classification is performed for each finger by training
the classification model. Due to the lack of finger bend-
edness classification datasets, we created datasets by col-
lecting the estimated 3D skeletons and their ground truths
for finger bendedness. Since 5 fingers are independent, it
is inefficient to map angles of 5 fingers altogether into
the finger bendedness label. Instead, we map 3 angles ob-
tained from each finger into the finger bendedness labels
and therefore we obtained 5 finger bendedness labels from
a hand image input.

The contribution of our paper is summarized as follows:

• We tackled the relatively new task, finger bendedness
classification, for understanding human hand poses in
the form of discrete finger bendedness information.

• Due to the lack of relevant datasets, we further devel-
oped the user interface for achieving the efficient data
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Fig. 1. The visualization of angles re-constructed by the inverse
kinematic (IK) process. The angles obtained from 3D skeletons
estimated from the Mediapipe could be used for the MANO [17]
mesh model’s pose parameter .

collection.

• Given collected datasets, we proposed the novel fin-
ger bendedness classification pipeline using inverse
kinematics and classification models. Also, we have
demonstrated its effectiveness by comparing it with
ResNet-based architecture that is learned to directly
output the finger bendedness from RGB images.

II. RELATED WORK

Hand pose estimation. For many years, hand pose estima-
tion studies use convolutional neural network (CNNs) and
most of researches proposed for single 3D hand pose esti-
mation [4, 14, 23]. [14] proposed real-time hand tracking
system that tracks global 3D hand pose from RGB-only
images and also suggested deep generative model to learn
latent for hand. [23] proposed a self-supervised method
for 3D hand pose estimation from depth maps. Also, they
introduced a approach to couple unsupervised model-
based fitting with supervised discriminative approaches for
hand pose estimation. And there are studies of 3D single
and interacting hand pose estimating papers [15, 18, 13].
[13] introduced InterNet (using ResNet) for 3D single and
interacting hand pose estimation. And InterNet estimates
handedness, hand pose, and right hand-relative left hand
depth from a single RGB image. [19, 16, 27, 8] perform
regression for pose estimation. [8] introduced new 2.5D
representation of hand pose and then provide method
to reconstruct the 3D pose from 2.5D using regression.
And in our paper, we use regression for hand classification.

Model-based Hand classification and recognition. Most
studies on hand classification and recognition are often
based on various models. Based on the most representative
CNN, [1, 25] uses CNN to recognize egocentric hand
gesture and detect fingertip or to solve the problem of

large model size and slow execution speed. In addition to
CNN, there are many studies based on other models. [11]
suggested Pose-TGCN that model spatial and temporal
dependencies in human pose trajectories simultaneously.
And there are also two model-based classification. For
instances, [10] recognize dynamic hand gesture of video
stream in real-time using lightweight CNN architecture
and then classify the hand using ResNeXt-101 model.
And [7] designed end-to-end learnable model for joint
3D reconstruction of hands and objects using MANO [17]
model. As such, in the field of hands using mesh, it often
depends on MANO model. However, in this paper, the
mesh can be created using the IK process without using
MANO parameter, and can be applied to classification.

Inverse kinematic process. The inverse kinematic (IK)
process is process of changing the position of the finger-
tip to the value of joint space. In recent years, IK process
is one of the extensively studied fields. And there have
been various suggestions to implement IK process. The
simple way is computational methods. For example, [2]
suggest computational ways for high nonlinearities using
adaption control laws. [6] described PODA system that
utilizes pseudo inverse control in order to solve redundant
limbs problem. And [24, 22, 3] also proposed new numeri-
cal solution to the general version of inverse kinematic. But
these methods has problem of optimization. The optimiza-
tion was quite repetitive time-consuming task. So, various
researches exist to solve this problem. Among them there
are heuristic methods such as CDC, FABRIK. They pay
a low computational cost for each heuristic iteration. In
addition to heuristic method, there are also analytical so-
lutions. And there is a study that proposed using combi-
nation algorithm of numeric and analytical method [20].
And most recently, there are studies using neural network
to solve IK problems [9, 21, 12]. [9] designed HOPS-Net
using CNN for Hand-held Object Pose and Shape estima-
tion and [21] proposed recurrent neural network architec-
ture for unsupervised motion retargeting. [12] proposed
differentiable HybrIK, a hybrid analytical-neural IK solu-
tion that converts the accurate 3D joint locations to full 3D
human mesh. And we used IK process introduced by [12]
for 3D joint estimation.

III. METHOD

A. 3D hand pose estimation

We used the Mediapipe framework [5] for achieving the
3D hand pose estimation, which is developed based on the
CNN architecture and provides the 3D coordinate values
from 21 hand keypoints in the real-time manner. The input
to the Mediapipe network (H) is RGB images (I), and the
output is 3D joint location (l = {u,v,d}), where d denotes
the relative depth. The network H is trained to map the
image input I towards the hand joint location l.
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Fig. 2. Overview of our finger bendedness classification framework. First, Mediapipe [5] is exploited to achieve the 3D hand pose
estimation. It outputs 3D uvd coordinates from the input RGB hand images. Then, the uvd coordinate is translated to 45-dimension
angles using the inverse kinetic (IK) process. Two classification models are used to efficiently achieve the angle classification: The first
model M1 is used for classifying bendedness of the thumb finger; and the second model M2 is used for classifying bendedness of other
fingers (index, middle, ring, pinky).

B. Obtaining angles from 3D coordinates

We proposed to use the inverse kinematics to obtain the
finger angle from the estimated 3D hand keypoints. While
the forward kinematics problem is well-posed, the inverse
kinematics problem is ill-posed, since there is either no or
many solutions for the inverse kinematic problem. We de-
fined the fundamental equation of inverse kinematic pro-
cess using the Jacobian matrix (J) considering single joint
with its joint at the origin. The world coordinates of the
end point with L1 distance away from origin are obtained
as follows:

x(q) =
[

L1cos(q1)
L1sin(q1)

]
(1)

The Jacobian matrix (J) of this point obtained by taking
derivative with respect to each of the joint coordinates (q1)
is obtained as follow:

J(q) def
=

∂

∂q
x(q) =

[
∂ (L1cos(q1))

∂q
∂ (L1sin(q1))

∂q

]
=

[
−L1sin(q1)
L1cos(q1)

]
(2)

Since J is neither square nor invertible matrix and it suf-
fers from the singularity problem. Instead of solving it ac-
curately, we solve it using the approximation. To reduce
the inference time and to embed differentiable model, we
adopt HybridIK method [12], which composes the entire
rotation recursively along the kinematics tree. A keypoint
of this method is that there is no need for the additional op-
timization procedure and it is differentiable, which allow
us 3D hand mesh in an end-to-end manner. This process

can be denoted as:

R = IK(P,T), T = H(I) (3)

where R = {Rpa(k),k}K
k=1, with desired locations of in-

put hand joints P = {pk}K
k=1 and rest pose template T =

{tk}K
k=1. K is the number of hand joints, tk ∈R3 is k-th joint

location of the rest pose template. pa(k) return the parent’s
index of the k-th joint, and Rpa(k),k is the relative rotation of
k-th joint with respect to its parent joint. Ideally, generated
rotation matrix should satisfy the following condition:

pk− ppa(k) = Rk(tk− tpa(k)) ∀1≤ k ≤ K. (4)

For our method, we could get 16 joint angle (there is no
angle of finger tips) described in the rotation matrix. These
joint angles could be input to the classification model. To
apply the estimated pose to the MANO [17] model as in
Fig. 1, we convert the rotation matrix to the axis-angle rep-
resentation.

C. Angle classification

For angle classification, we trained two classification
models (M1,M2). To classify 5 finger’s angles into their
bendedness, it may require to train 5 independent classi-
fication models. However we trained only 2 classification
models as the distribution since the thumb finger is differ-
ent from that for remaining 4 fingers; while the distribution
is similar for 4 fingers. The first model M1 is the classifica-
tion model which is responsible for the thumb finger clas-
sification, and the second model M2 is reserved for classi-
fying the remaining 4 fingers. Furthermore, if we use only
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2 classification models, the data collection becomes easier.
We collect the data for only thumb and index fingers: As
the middle finger, ring finger, and pinky finger are limited
in their rotation angles compared to the index finger, data
obtained by the index finger could span the coverage of
these fingers. Therefore, the M2 classification model which
is trained by index finger data is used for classifying the
bendedness of the 4 fingers.

After applying the inverse kinematic (IK) process, we
obtain the 45-dimensional angle vector which represents
9 angles for 5 fingers. So, the input to the classification
models M1 and M2 are the 9-dimensional vector, which en-
codes the rotations about the z (3-dim), φ (3-dim), and θ

(3-dim) axes from 4 bone connections, respectively. Via
the classification models, we map the 45-dimensional an-
gle vector into three types of bending labels: ‘bending(0)’,
‘half-bending(1)’ and ‘unbending(2)’.

D. Independent finger-level data collection

We collect a dataset using the webcam and our annota-
tion tool. As mentioned in the previous section, there are
only two classification models: M1,M2 which are trained
by thumb and index finger data. Compared to the data col-
lection using whole 5 finger configuration, the data col-
lection becomes much more efficient when using only 2
fingers: If we collect data in the holistic way for 5 finger
configuration as in [26], the overall configuration of the
hand pose becomes 35 = 243 (having 0, 1 and 2 for 5 fin-
gers). However, if we collect data for 2 finger configuration
and regard each finger independent, the overall configura-
tion becomes only 3× 2 = 6 (collect 0, 1 and 2 for 2 in-
dependent fingers). We could rule out the viewpoint varia-
tion as the angle inputs are invariant to the viewpoints. Our
annotation tool records hand images, the Mediapipe and
IK process are applied subsequently to obtain the angles
from the images. Then, we manually annotate bendedness
of the thumb and index fingers. During the data collection,
we fold and unfold thumb and index fingers sequentially.
Overall, we have collected 400 number of angle and bend-
edness label pairs to train M1 and M2 classification models,
respectively.

IV. EXPERIMENTS AND RESULTS

Tables 1 is the quantitative results of cross-subject an-
gle classification for thumb, index finger, middle finger,
ring finger, and pinky finger, respectively. The experimen-
tal metrics are accuracy, precision, recall and f1-score.
Overall, the classification results are good. We could also
see the validity of the second classification model M2 that
is trained by the index finger data for middle, ring and
pinky fingers. Also, we make the real-time demo using our
framework. The Fig 3 is the visualization obtained from
our classification models.

Fig. 3. Examples of real time demos using our framework. Upper
image shows the annotation of the finger gesture as [0, 2, 2, 0, 0]
written in black box. And the lower image shows the annotation
of the finger gesture as [1, 1, 2, 2, 2] written in black box.

Finger Label Precision Recall F1-Score Acc

Thumb
0 0.93 0.84 0.89

0.801 0.19 0.38 0.25
2 0.77 0.85 0.81

Index
0 0.99 0.89 0.94

0.891 0.46 0.86 0.60
2 0.72 0.90 0.80

Middle
0 1.00 0.95 0.97

0.921 0.50 0.52 0.51
2 0.69 0.95 0.80

Ring
0 1.00 0.87 0.93

0.871 0.52 0.94 0.67
2 0.79 0.75 0.77

Pinky
0 0.99 0.66 0.79

0.741 0.40 0.81 0.54
2 0.69 0.98 0.81

Table 1. The test result of cross-subject using our method. It
shows each classification result of finger labels. It is better when
it closed to 1.

Finger Label Precision Recall F1-Score Acc

Thumb
0 0.34 0.75 0.47

0.261 0.00 0.00 0.00
2 0.00 0.00 0.00

Index
0 0.76 0.60 0.67

0.471 0.00 0.00 0.00
2 0.08 0.10 0.09

Table 2. The test result of cross-subject fingers using ResNet-50
baseline. It shows each classification result of finger labels. The
0 result indicates that the model mis-predict the corresponding
finger label.
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We also trained and tested the ResNet-50 model by our
training datasets which consist of thumb and index fingers.
Since the middle, ring and pinky finger datasets are lim-
ited, we are not able to experiment on these finger with the
same environment of our method. So, the result of ResNet-
50 model have only thumb and index finger as table 2. As
shown in table 2 the accuracy of the ResNet-50 model is
far less than that of our method.

V. CONCLUSION

In this work, we propose the finger bendedness classifi-
cation framework using the Mediapipe, inverse kinetic(IK)
and two classification models. The Mediapipe is involved
to estimate 3D hand pose in real-time and via IK process,
we are able to obtain 45-dimension angles. After training
two classification models by our collected datasets, mod-
els become able to classify the finger bendedness. By re-
garding each finger independent, we could secure our data
collection process efficiently. Experimental results demon-
strate that the finger bendedness is performed well com-
pared to the state-of-the-art image classification baseline
using ResNet-50 architecture.
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SUMMARY OF THIS PAPER

A. Problem Setup

Previous hand pose estimation or classification and gesture recognition studies, there were many model-based
methods. But, since these model-based methods are parameter-based, they must be pre-defined, and the process
of learning parameters is a nonlinear process. Also, the image-model misalignment be occured. Because of these
problem, the performance will be further reduced. On the other way, the 3D keypoint estimation method can
obtain pixel-level localization accuracy by combining deep CNN network and volumetric representation, but it
can predict unrealistic body structure. These problems result in poor task performance.

B. Novelty

In this paper, we used the inverse kinetic(IK) process, which can reduce the difference between mesh and 3D
keypoint, to solve unrealistic body structure prediction problems without using model-based methods. Also, by
using Mediapipe, it is possible to create a demo that can infer hand pose classification in real time. Finally, we
easily collected datasets for training the regression model.

C. Algorithms

From the image input, we can get the uvd coordinates through the hand pose estimation. This uvd coordinate is
translated into 45-dimension angle using inverse kinetic process. And use two classification models to classify
from a 45-dimension angle. First classification model is only for classification of thumb. And the second model
is for the other fingers (index, middle, ring, pinky). Note that the second model trained by only index finger
dataset. Therefore we can get the classification label for each finger.

D. Experiments

The experiment result metrics of angle classification are accuracy, precision, recall, f1-score. Overall results
of classification for each label and each finger show good performances. So, we can check that our proposed
algorithms results in good inference score. Here, we also see the validity of second model which trained by
only index finger dataset. Also, we make the real time demo using our framework. It works well in real time
inference and classification.
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